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• Apple’s new privacy page, “On devices running iOS 8”: 

• “Apple cannot bypass your passcode” 

• “…not technically feasible…to respond to 
government warrants” 

• What does that mean? What did they do before? 

• What about other forensic attacks Analysis?
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• CNET, May 2013, claims “Apple can bypass the 
security software”: 

• Big backlog (7 weeks, one case took 4 months)
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• Inference: 

• Can’t just plug in and use a magic key 

• Could brute force passcodes, conceivably  

• “Apple can afford a LOT of GPU crackers…” 

• It doesn’t work that way
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• iPhone 3GS / iOS 3 

• Dedicated AES processor  

• Located in DMA channel between CPU and Disk 

• Generate a random key (EMF key) 

• Encrypt EMF key using a hardware-derived key 
(0x89b) 

• Store encrypted EMF key in special disk area
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• Advantages 

• Fast wipe 

• Can’t access / modify data directly (without OS) 

• Can’t transfer chips to another device 

• Limitations 

• Filesystem access grants access to everything 

• No additional protections when locked
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• Data Protection API introduced in iOS 4 

• Random file key created, used to encrypt 

• File key is encrypted using a class key 

• Encrypted file key stored with file metadata
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• Default class: 

• iOS 4 - 6 is “no protection” 

• iOS 7 - 8: Complete until First Authentication 

• Most system apps through iOS 7 still used None

Protection Name Description

None No additional encryption
CompleteUnlessOpen Asymmetrical, for locking while writing
CompleteUntilFirst 
UserAuthentication

Encrypted after reboot, until 1st unlocked

Complete Encrypted when device is locked
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• Class 4 or D is File Protection “None” class 

• Random Dkey generated 

• Encrypted with key 0x835, derived from UID 

• Encrypted key stored in effaceable storage
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• Each class key is also wrapped or encrypted 

• Using the user’s passcode key 

• Entire keybag is encrypted 

• Using a bag key (stored in effaceable storage) 

• When passcode is changed, old bag keys deleted
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• PBKDF2, using Passcode, Salt, UID, variable 
iterations 

• Work factor depends on device 

• Constant time — approx. 80 mS / attempt 

• A7 and A8 - 5 second delay 

• Implemented in hardware (Secure Enclave) 

• Depends on UID, which can’t be extracted
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• Must be performed on the device 

• Signed external image 

• Using a bootrom vulnerability 

• 80 mS per attempt 

• Now up to 5 sec, so multiply table by ~62 

• Attempt escalation, auto-wipe are part of UI 

• When booted from external image, no limits

Size Time
4-digit 

numeric 15 min

6-digit 
numeric 22 hours

6-char 
lowercase 286 days

6-char mixed 
case 50 years
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• FileProtectionComplete key removed from RAM 

• All Complete protection files now unreadable 

• [I once found an edge case where this doesn’t 
happen…]
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• The system keybag is duplicated 

• Class keys wrapped using new passcode key 
(encrypted with 0x835 key, wrapped with passcode) 

• New BAG key created and stored in effaceable 
storage 

• Old BAG key thrown away 

• New keybag encrypted with BAG key
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• File Protection Complete key lost 

• Complete until First Authentication key also lost 

• Only “File Protection: None” files are readable 

• And then only by the OS on the device 

• Because FDE
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• Effaceable storage is wiped, destroying: 

• DKey: All “File protection: none” files are unreadable 

• Bag key: All other class keys are unreadable 

• EMF key: Can’t decrypt the filesystem anyway
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• File is encrypted with a File Key 

• File Key encrypted with Class Key 

• Class Key encrypted with Passcode, 0x835 

• Passcode Key derived from UID 

• Keybag encrypted with Bag Key 

• Entire disk encrypted with EMF Key 

• EMF key encrypted using UID
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• Hardware: AES processor probably inside SoC  

• Software: No dice, must boot and get a shell 

• Boot: Jailbreak, or boot trusted external image 

• Only Apple can do this 

• Oh, and hackers (iPhone 4 / iPad 1 and earlier)
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• Anything with “FileProtectionNone” is readable 

• Any other files: Nope 

• Protection Complete: obviously encrypted 

• Complete Until First Unlock: we just rebooted 

• What uses “None”? 

• Any apps not updated for iOS 7+ 

• Most system apps (up to iOS 7) 

• Preferences, etc.
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• Really just bugs in “Phone App”  

• Jumping from one window (lock screen) to others 
(contact list)  

• Even the one bypass (iOS 5, 2011) that got to 
springboard couldn’t go anywhere due to crypto
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• Again, didn’t have a magic key (else why a backlog?) 

• Could attach a trusted image 

• Then read anything that’s File Protection: None 

• Could maybe brute force passcode 

• Don’t know if they offered this as a service 

• Not feasible for strong passcodes
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• iOS 7 defaults: 

• 3rd party apps: Complete Until First Unlock 

• System apps: None (except Mail) 

• Now System Apps default to Until First Unlock 

• Files unreadable after a reboot
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• iOS 7 phone: 

• Reboot, Call from landline 

• See full contact information (name, picture, etc.) 

• iOS 8 phone: 

• Reboot, call from landline, just see phone number 

• Unlock, lock again call again 

• Now you see everything
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• Disk-level forensics require filesystem access 

• (ignoring USB forensics, more shortly) 

• Access requires booting from trusted image 

• Booting from a trusted image requires: 

• Reboot.  

• Therefore “complete until first auth” keys are lost.
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• Boot from trusted image 

• Extract anything that’s not encrypted 

• Data from older applications 

• App preferences (generally unencrypted…may be required) 

• Anything explicitly left unencrypted by developer 

• Odds and ends 

• Should be technically able to brute force weak passcodes
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• Forensic Magic: 

• I don’t know. They won’t let us play. (also, $$$$) 

• Still subject to encryption controls 

• Stuff we understand: 

• Trusted machines can get everything 

• That’s why they’re “Trusted” 

• Log into your co-workers desktop, steal pairing record
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• Warrant for trusted machines synced to device 

• Warrant for iCloud based data 

• Warrants for EVERYTHING ELSE stored online 

• Court order to unlock phone
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• Can Apple brute force passcodes? 

• Would they? 

• Could they be ordered to?  

• Has this happened already? 

• Is the crypto processor located within the SoC?
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• Is KDF permanently burned into silicon 

• Or is it part of Secure Enclave firmware 

• Can it be upgraded or replaced? 

• Is 5-second delay permanent, or replaceable? 

• Have they added a brute force counter in 
hardware?
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• Use a strong passcode 

• Limit the number of computers which are “Trusted” 

• If you’re being arrested, power down the phone
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