
David Schuetz
@DarthNull
darthnull.org

NoVA Hackers
October 13, 2014

iPhone Encryption,
Apple, and The Feds

NoVAHackers
Oct 13, 2014Background

• Apple’s new privacy page, “On devices running iOS 8”:

• “Apple cannot bypass your passcode”

• “…not technically feasible…to respond to
government warrants”

• What does that mean? What did they do before?

• What about other forensic attacks Analysis?

NoVAHackers
Oct 13, 2014Apple “deluged” by police

• CNET, May 2013, claims “Apple can bypass the
security software”:

• Big backlog (7 weeks, one case took 4 months)

NoVAHackers
Oct 13, 2014What does it MEAN?!?

• Inference:

• Can’t just plug in and use a magic key

• Could brute force passcodes, conceivably

• “Apple can afford a LOT of GPU crackers…”

• It doesn’t work that way

NoVAHackers
Oct 13, 2014How iOS encryption works

Effaceable
Storage

UID
Key 0x89B

Key 0x835

Stored in
Hardware

Dkey

EMF

BAG1

Data Partition

Data File
File Key
File Data

Keybag

Class 11 Key

Class 1 Key
Class 2 Key
Class 3 Key

Passcode

KDF Class 4 Key

Entered
by User

Keychain File

Keychain
Item

Data File
File Key
File Data

Passcode
Key

NoVAHackers
Oct 13, 2014Full disk encryption

• iPhone 3GS / iOS 3

• Dedicated AES processor

• Located in DMA channel between CPU and Disk

• Generate a random key (EMF key)

• Encrypt EMF key using a hardware-derived key
(0x89b)

• Store encrypted EMF key in special disk area

NoVAHackers
Oct 13, 2014iOS 3 - FDE

Effaceable
Storage

UID
Key 0x89BStored in

Hardware
EMF

Data Partition

Data File

NoVAHackers
Oct 13, 2014Advantages

• Advantages

• Fast wipe

• Can’t access / modify data directly (without OS)

• Can’t transfer chips to another device

• Limitations

• Filesystem access grants access to everything

• No additional protections when locked

NoVAHackers
Oct 13, 2014File-level encryption

• Data Protection API introduced in iOS 4

• Random file key created, used to encrypt

• File key is encrypted using a class key

• Encrypted file key stored with file metadata

NoVAHackers
Oct 13, 2014iOS 4 - Data Protection API

Data Partition

Data File

Class Key

File Key
File Data

NoVAHackers
Oct 13, 2014Multiple classes

• Default class:

• iOS 4 - 6 is “no protection”

• iOS 7 - 8: Complete until First Authentication

• Most system apps through iOS 7 still used None

Protection Name Description

None No additional encryption
CompleteUnlessOpen Asymmetrical, for locking while writing
CompleteUntilFirst
UserAuthentication

Encrypted after reboot, until 1st unlocked

Complete Encrypted when device is locked

NoVAHackers
Oct 13, 2014Class keys in the keybag

Data Partition

Data File
File Key
File Data

Keybag

Class 11 Key

Class 1 Key
Class 2 Key
Class 3 Key
Class 4 Key

Keychain File

Keychain
Item

Data File
File Key
File Data

NoVAHackers
Oct 13, 2014Data Protection: None

• Class 4 or D is File Protection “None” class

• Random Dkey generated

• Encrypted with key 0x835, derived from UID

• Encrypted key stored in effaceable storage

NoVAHackers
Oct 13, 2014Default protection key

Effaceable
Storage

UID
Key 0x89B

Key 0x835

Stored in
Hardware

Dkey

EMF

Data Partition

Data File
File Key
File Data

Keybag

Class 11 Key

Class 1 Key
Class 2 Key
Class 3 Key
Class 4 Key

Keychain File

Keychain
Item

Data File
File Key
File Data

NoVAHackers
Oct 13, 2014Class key protection

• Each class key is also wrapped or encrypted

• Using the user’s passcode key

• Entire keybag is encrypted

• Using a bag key (stored in effaceable storage)

• When passcode is changed, old bag keys deleted

NoVAHackers
Oct 13, 2014Passcode and keybag

Effaceable
Storage

UID
Key 0x89B

Key 0x835

Stored in
Hardware

Dkey

EMF

BAG1

Data Partition

Data File
File Key
File Data

Keybag

Class 11 Key

Class 1 Key
Class 2 Key
Class 3 Key

Passcode

KDF Class 4 Key

Entered
by User

Keychain File

Keychain
Item

Data File
File Key
File Data

Passcode
Key

NoVAHackers
Oct 13, 2014Passcode KDF

• PBKDF2, using Passcode, Salt, UID, variable
iterations

• Work factor depends on device

• Constant time — approx. 80 mS / attempt

• A7 and A8 - 5 second delay

• Implemented in hardware (Secure Enclave)

• Depends on UID, which can’t be extracted

NoVAHackers
Oct 13, 2014Brute forcing passcode

• Must be performed on the device

• Signed external image

• Using a bootrom vulnerability

• 80 mS per attempt

• Now up to 5 sec, so multiply table by ~62

• Attempt escalation, auto-wipe are part of UI

• When booted from external image, no limits

Size Time
4-digit

numeric 15 min

6-digit
numeric 22 hours

6-char
lowercase 286 days

6-char mixed
case 50 years

NoVAHackers
Oct 13, 2014Locking…

• FileProtectionComplete key removed from RAM

• All Complete protection files now unreadable

• [I once found an edge case where this doesn’t
happen…]

NoVAHackers
Oct 13, 2014Changing passcode…

• The system keybag is duplicated

• Class keys wrapped using new passcode key
(encrypted with 0x835 key, wrapped with passcode)

• New BAG key created and stored in effaceable
storage

• Old BAG key thrown away

• New keybag encrypted with BAG key

NoVAHackers
Oct 13, 2014Rebooting…

• File Protection Complete key lost

• Complete until First Authentication key also lost

• Only “File Protection: None” files are readable

• And then only by the OS on the device

• Because FDE

NoVAHackers
Oct 13, 2014Wiping device…

• Effaceable storage is wiped, destroying:

• DKey: All “File protection: none” files are unreadable

• Bag key: All other class keys are unreadable

• EMF key: Can’t decrypt the filesystem anyway

NoVAHackers
Oct 13, 2014Dem bones…

• File is encrypted with a File Key

• File Key encrypted with Class Key

• Class Key encrypted with Passcode, 0x835

• Passcode Key derived from UID

• Keybag encrypted with Bag Key

• Entire disk encrypted with EMF Key

• EMF key encrypted using UID

Data Partition

Keybag

Data File

File Key
File Data

Class Key

BAG1

UID

Passcode

KDF

Passcode
Key

Key
0x89B

EMF

Key
0x835

DKey

Disk

Effaceable
Storage

System on
a Chip
(SoC)

NoVAHackers
Oct 13, 2014Bypassing encryption!

• Hardware: AES processor probably inside SoC

• Software: No dice, must boot and get a shell

• Boot: Jailbreak, or boot trusted external image

• Only Apple can do this

• Oh, and hackers (iPhone 4 / iPad 1 and earlier)

NoVAHackers
Oct 13, 2014Apple can get to FS

• Anything with “FileProtectionNone” is readable

• Any other files: Nope

• Protection Complete: obviously encrypted

• Complete Until First Unlock: we just rebooted

• What uses “None”?

• Any apps not updated for iOS 7+

• Most system apps (up to iOS 7)

• Preferences, etc.

NoVAHackers
Oct 13, 2014Lock screen bypasses

• Really just bugs in “Phone App”

• Jumping from one window (lock screen) to others
(contact list)

• Even the one bypass (iOS 5, 2011) that got to
springboard couldn’t go anywhere due to crypto

NoVAHackers
Oct 13, 2014Apple and warrants

• Again, didn’t have a magic key (else why a backlog?)

• Could attach a trusted image

• Then read anything that’s File Protection: None

• Could maybe brute force passcode

• Don’t know if they offered this as a service

• Not feasible for strong passcodes

NoVAHackers
Oct 13, 2014So what changed?

• iOS 7 defaults:

• 3rd party apps: Complete Until First Unlock

• System apps: None (except Mail)

• Now System Apps default to Until First Unlock

• Files unreadable after a reboot

NoVAHackers
Oct 13, 2014See for yourself

• iOS 7 phone:

• Reboot, Call from landline

• See full contact information (name, picture, etc.)

• iOS 8 phone:

• Reboot, call from landline, just see phone number

• Unlock, lock again call again

• Now you see everything

NoVAHackers
Oct 13, 2014Why does this matter?

• Disk-level forensics require filesystem access

• (ignoring USB forensics, more shortly)

• Access requires booting from trusted image

• Booting from a trusted image requires:

• Reboot.

• Therefore “complete until first auth” keys are lost.

NoVAHackers
Oct 13, 2014What can Apple do now?

• Boot from trusted image

• Extract anything that’s not encrypted

• Data from older applications

• App preferences (generally unencrypted…may be required)

• Anything explicitly left unencrypted by developer

• Odds and ends

• Should be technically able to brute force weak passcodes

NoVAHackers
Oct 13, 2014Other forensic magic?

• Forensic Magic:

• I don’t know. They won’t let us play. (also, $$$$)

• Still subject to encryption controls

• Stuff we understand:

• Trusted machines can get everything

• That’s why they’re “Trusted”

• Log into your co-workers desktop, steal pairing record

NoVAHackers
Oct 13, 2014Other avenues for police

• Warrant for trusted machines synced to device

• Warrant for iCloud based data

• Warrants for EVERYTHING ELSE stored online

• Court order to unlock phone

NoVAHackers
Oct 13, 2014Unanswered questions

• Can Apple brute force passcodes?

• Would they?

• Could they be ordered to?

• Has this happened already?

• Is the crypto processor located within the SoC?

NoVAHackers
Oct 13, 2014Disabling brute force

• Is KDF permanently burned into silicon

• Or is it part of Secure Enclave firmware

• Can it be upgraded or replaced?

• Is 5-second delay permanent, or replaceable?

• Have they added a brute force counter in
hardware?

NoVAHackers
Oct 13, 2014Best bet

• Use a strong passcode

• Limit the number of computers which are “Trusted”

• If you’re being arrested, power down the phone

NoVAHackers
Oct 13, 2014References

• Apple “iOS Security” paper

• “iPhone data protection in depth” (Sogeti, HITB
Amsterdam 2011)

• “Evolution of iOS Data Protection and iPhone
Forensics: from iPhone OS to iOS 5”, (Elcomsoft,
Black Hat Abu Dhabi 2011)

• All noted in recent posts on my blog

