
BSides Delaware, November 2018

1Password Internals

How does this thing actually work, anyway?

David Schuetz

Background
• Passwords are a pain in the neck!

• They need to be strong
• And unique

• Which means we can't remember them
• And let’s not even mention 2FA
• So we need password managers

Why 1Password?
• Well designed system
• Lots of great features
• Very transparent

• Reasonably well documented
• Some parts vague or incomplete

• With help, I think I’ve got it mostly nailed down
• (I’m kind of obsessive about crypto puzzles)

Why am I here?
• Lots of complicated technology today
• We sort of “assume” these Black Boxes are safe
• But how do we know for sure?

• Need to really understand to assess risk
• Documentation is great
• But must “Verify”

• Best way to know you’ve understood how something works:
• Teach it to someone else!

Topics for Today
• Login and encryption (local and server)
• Sharing vaults
• Handling multiple accounts
• Recovering from lost password

• High-level “easy to understand”
• Including a few deep technical details

• Build your own!

Not a topic: comparing to other tools
• I've used 1Password for almost 10 years. We use it at work.
• I’m told there are other password managers out there.
• I’m told some of them are pretty good.
• I’m not going to compare 1Password to any of them.

• Love to see more “How things work” talks

1Password Nomenclature
• Account

• Group of vaults – like your “Expel” account, your “Home” account
• Vault

• Collection of items (passwords, notes)
• Master Password

• How you unlock 1Password
• Secret Key

• An account-specific code
• That "A3-abcdef-123456-blah-blah-blah" thing

Cryptography
• Fear not! We won’t get too technical
• Some useful terms:

• Symmetric Key – AES
• Public and Private Keys – RSA
• Hash Functions – SHA, HMAC, etc.
• Key Derivation Functions (HKDF, PBKDF2)

• If already understand these – great!
• If not, just treat them as “black boxes”

• We’ll show how they work in context
• It’s the larger picture that’s important

Let’s Go!

It’s all pretty straightforward…

Does it need to be that complicated?

Actually, yes.

Let’s build a simple password manager together

Simple List

Passcode as a gatekeeper

Encrypt the data

Encrypt the key

Passwords make bad keys
• Just like with password brute forcing

• Pick a password
• Decrypt
• Did it work? No, try another one

• Entropy – measures how “big” the password is
• “password” – 8 lowercase letters – not a lot of entropy
• Measured in bits…it’s about 38 bits

• Good encryption requires 128-256 bits
• How do we “stretch” a password into a strong key?

Hash Function
• Converts arbitrary input into a fixed string of bits

• Random – output totally unlike input
• Consistent – same input always generates the same output
• Irreversible – impossible to take hash and go back to original
• Divergent – hashes of similar texts should vary widely

First Hash password0 305e4f55ce823e111a46a9d500bcb86c

Second Hash password1 7c6a180b36896a0a8c02787eeafb0e4c

Common Letters password.8....................c

Avoiding Duplicate Keys
• Hashes are consistent

• Two users with the same password
• Both will have the same key

• Add a “salt”
• Random string added to the password
• Not secret – stored alongside the hash or key
• (needed to regenerate the same result later)

Now what does it look like?

What about server logins?
• Password cracking is still a risk
• Compromised server (external or insider)

• Crack passwords
• Decrypt vaults
• PROFIT!

• So make it 2-factor! (duh!)
• Can’t use a dynamic token
• Because every 30 seconds the key changes
• (also duh)

Introducing the Secret Key
• Attackers need both Master Password and Secret Key

• Looks like this:

• A3-ASWWYB-798JRY-LJVD4-23DC2-86TVM-H43EB

• Provides just under 129 bits of entropy

How to mix it in?
• Literally “add” the values together

• Simple and reasonably fast
• Could end up with a result longer than you need

• String them together one after the other
• Super fast
• Makes the key much longer than you need

• Can also use a logical XOR operation
• Super fast
• Leaves the key length exactly the same as before

And now…

None of this is good enough
• We’ve gone from a short password
• To a 256-bit key

• This is great!

• We can still guess the password

How do you attack it?
• Have the password and salt, but not the secret key

• Can derive first result
• But must brute force the secret key

• Have the secret key and salt, but not password
• Brute force password

• But won’t that take a long time?
• Maybe not. The key derivation is actually incredibly fast.

• We beat this by slowing it down. A lot.
• Repeating the process 100,000 times is (currently) a good start

• Also recommend a strong password

Strong password? How strong?
• Agilebits’ recommendation is 4 word passphrase
• Currently hosting a password cracking challenge

• 3 words (selected from list of 18,000+)
• Running for six months (since May 3)
• Only one of the challenges have been cracked so far

• 4 or 5 words should be more than sufficient (for now)

update-clown-squid-bedpost

splendor excel rarefy

glassy ubiquity absence

Pull it all together…

Combine everything
• So far we have:

• Master Password
• Salt
• Secret Key
• Email

• Mix them all together
• Produce final unlocking key

• Called “Two-Secret Key Derivation"

Two-Secret Key Derivation (2SKD) Process

HKDF Step
• HMAC Key Derivation Function – RFC 5869
• Takes three parameters – Key, Salt, Info
• Different data used for each element of 2SKD

Element Key Salt Info

PBKDF2 Salt Password Salt User Email “PBES2g-HS256”
Secret Key mix-in Secret Account ID Version

So our system now looks like…

What about logging into the server?
• Don’t we need to send the password to the server?
• Which puts it at risk from…all kinds of attackers?

Relax, we’ve got math!
• Secure Remote Password protocol:

• Five specialized functions
• Password: X
• Verifier: V = f0(X)

• Client creates the Verifier at setup
• And sends it to the server

• Verifier is easy to compute, but difficult to reverse
• Only the client ever sees your password

Secure Remote Password Protocol

Client Server
A = f1(password, random data 1) B = f2(verifier, random data 2)

(send A to server) (send B to client)
K1 = f3(A, B, data_1) K2 = f4(A, B, data_2)

Does K1 = K2?

(Somewhat Simplified)

• If I have the verifier:
• Can’t reverse to password

• Can’t calculate K2 because I can’t build A without the password

The actual math (in case you’re curious)

Client Server
A = ga - send to server B = kv + gb – send to client
u = hash(A, B) u = hash(A, B)
(B - kgx)(a + ux) (Avu)b

(kv + gb - kgx)(a + ux) (gavu)b

(kgx + gb - kgx)(a+ux) (ga(gx)u)b

(gb)(a+ux) (g(a+ux))b

K1 = hash((gb)(a+ux)) K2 = hash(g(a+ux))b

a & b – random numbers at client and server
g, k – special constants known to both

x – user’s password (expressed as a number)
v – verifier for the password, stored on the server
 v = gx

Again, though, we want a strong password
• We have the Master Password
• We also have the Secret Key
• Makes a REALLY STRONG password.

• 256-bits
• Equivalent to 39 characters of A-Za-z0-9special (96 letter alphabet)
• 2iZmlarN|<+jup$k8f2BJ\'H`7#;O.ncTeH!pOJv

• So why not just re-use the MUK?

We shouldn’t reuse passwords!
• Good catch.

• Do exactly the same thing as the Master Unlock Key
• But change the salt & a couple other parameters
• Just as strong, but safely different from encryption key

SRP-X Derivation

Summary:

What can SRP get you? (Web Features)
• Several features only in web interface

• Manage vault access
• Change account password
• Billing, etc.

• SRP key can't be used to decrypt vault
• Even when logged in, 1Password servers can’t read your data

• Vaults can only be decrypted at the client
• Web client builds MUK locally
• Decrypts encrypted items inside the browser

Organizing and Sharing Passwords

What if I want to share passwords?
• Probably shouldn’t just share your whole password list
• Best to create different lists

• One for yourself
• One for your main work team
• One for the company as a whole
• …etc.

Imagine a wall full of small drawers…

Imagine a wall full of small drawers
• Passwords stored in locked drawers
• People given drawer keys based on need
• Store their keys in personal key boxes
• A combination unlocks the box
• The combination is sealed in an envelope

• (as a backup)
• And the envelopes are locked in your desk

If I create a new vault?
• I make copies of the key for everyone who needs it
• Go to each person’s desk, and find their box
• Then slip the key through a slot in the top
• (I can add it but can't open the box to get other keys)

So it works like this:

But in reality, it's this:

Which ultimately looks like this…

What if I forget my password?
• Administrators are part of a "recovery group”

• Or “Organizer” for 1Password Family account
• They have a keybox with all vault keys in it

• Only exists on the server
• Each item encrypted with Recovery Group public key

• When a user resets their account
• The admin gets a “Finalize recovery” prompt
• Their client:

• Retrieves and decrypts the user’s encrypted keys
• Re-encrypts with the user’s public key
• Sends them to the user
• Deletes local copy

Unlocking Multiple Accounts

How does it handle multiple accounts?
• One password (ha!)
• Primary account unlocks others
• Delete the primary account, and the next one becomes primary

macOS:
• 2SKD derives Master Unlock Key
• MUK decrypts primary account vaults
• MUK decrypts account data for secondary accounts

• Reveals MUK and SRP-X for each account
• Each individual MUK decrypts the vaults for its own account

Windows:
• Primary account password decrypts EncryptedMasterKey
• That decrypts account information for each account

• Master Password (in plaintext), Secret Key, salt, email, etc.
• Can then derive MUK and SRP for each account
• …And then decrypts vaults

Encrypted Master Key

Encrypted Master Key (EMK) Structure

Decrypting EMK
• Derive decryption key from unlock password

• PBKDF2-SHA512 with given salt
• Iteration count varies depending on computer speed

• Updates with each unlock, if necessary
• Target is to require 1 second to compute

• Decrypts payload (using AES-CBC)
• Payload contains:

• Padding (16 bytes), Master Key, and HMAC Signature (32 bytes each)
• Signature verifies Master Key wasn’t tampered with

• Master key decrypts account data

Multiple Accounts, Overview

Which brings us back here…

(better yet, a simplified view)

Where is everything kept?

Client Vaults Secret Key Master
Password

Unlock
Password

macOS ~/Library System
keychain

User’s memory n/a

Windows x Encrypted in
vault

Encrypted in
vault

User’s memory

Web Browser (n/a – fetched
on demand)

Browser local
storage

(obfuscated)

User’s memory n/a

Wrapping Up

Internal Details
• Secret Key

• Resilience to password breaches at server
• Master Password

• Unlocks EVERYTHING
• SRP to server

• Don’t have to send actual password
• Derived SRP-X

• And the “password” the server uses is a 256-bit key
• Shared Vaults, Recovery

• Can share keys w/out knowing recipient’s private keys or password

What’d I miss?
• Watchtower
• Travel mode
• 2FA
• Journal / Backup
• Mobile, Browser, CLI clients
• Browser extensions
• Obfuscated passwords via SMS
• Touch ID

Thanks!
• AgileBits - for being so transparent and open

• AgileBits Engineers - for answering my never-ending stream of
questions on the support forums

• Expel - for letting me turn a simple question into this talk
• (and an absurdly-long set of blog posts)

Further Reading
• Blog:

• DarthNull.org/series/1password
• Multi-part series
• Extensive technical detail, examples, additional topics

• Github
• GitHub.com/dschuetz/1password
• Simple example scripts
• Rough library
• Test data (and tool to generate it)

