
2010
Intrepidus Group, Inc.

By David Schuetz
Senior Consultant

NAILS IN THE CRYPT(3)
Abstract: Admit it, password cracking is fun. And the only thing more fun than
breaking a single root password is breaking a whole file of passwords, most of
which are for administrators. Unfortunately, even with modern systems, brute
forcing an entire large file remains terribly slow. So some years back, folks came up
with the idea of rainbow tables, and suddenly fast attacks on an entire user base
became possible. But for some reason, nobody's ever extended rainbow tables to
support old-school UNIX crypt(3) passwords.

Maybe it was just processor speed. Or maybe it was disk space. Or maybe it was
statements like "You'd need a full set of rainbow tables for each salt." But nobody's
done it, at least not openly. This paper outlines a simple method to do just that,
extending rainbow tables backwards into crypt(3) territory.

Introduction

Password cracking can be a powerful tool, both for auditing and penetration testing.
However, password cracking can also be slow. Trying to crack an entire database of
hundreds or thousands (or hundreds of thousands) of hashes can be very, very slow. So
the obvious solution is to simply store the results of your password crack attacks for
future use – eventually building up a huge database of password hashes. Once you do
that, all future cracking sessions will be NEARLY INSTANTANEOUS! Win!

Thereʼs just one drawback.

An eight-character password, taken only from letters and numbers (A-Z, a-z, 0-9),
comes from a key space of (26 + 26 + 10)^8, or 62^8 possible passwords. If you have a
database that stores each password, and the resulting (for example), Unix crypt(3)
hash, youʼd need:

62^8 keys * (8 bytes / key) * (11 bytes / hash)

or approximately

4.1 PETABYTES.

Thatʼs quite a bit of storage. This doesnʼt even include special characters like +, $, or !.
Adding special characters in could push the number to well over 100 Petabytes.

Then, some time ago, some clever folks realized that you donʼt have to store every hash
you compute. If you have a predictable procedure to walk through the key space, you
can simply record key values in that process and re-compute the missing values on the
fly. Itʼs called a Time-Memory Tradeoff. The idea dates to a paper published in 1980 by
Martin Hellman. In 2003, Philippe Oechslin expanded on Hellmanʼs ideas, and Rainbow
Tables were born.

Rainbow Tables allow for a very sparse storage of very large password hash databases.
Today, there are many different programs for computing and using Rainbow Tables.
There are distributed projects for generating large tables. There are sites dedicated to
distributing pre-computed tables. Rainbow Tables exist for just about every popular
password hash algorithm: LAN Manager (LM), NT LAN Manager (NTLM), MD5, SHA,
even for keys used in WiFi WPA security. Only one major omission remains: there are
still no Rainbow Tables for the grandfather of all the password hashes, the old-school
Unix crypt(3) hash.

Nails in the Crypt(3) December 21, 2010

Why Not?

So why havenʼt Rainbow Table geeks built tables for crypt(3)? The most-cited reason is
the salt.

As a protection against pre-computed attacks (like weʼre discussing here), the creators
of the crypt(3) algorithm added a “salt.” The salt is a pair of characters (taken from the
character set A-Z, a-z, 0-9, ., and /), which alters the encryption algorithm used to create
the password hash. This guarantees that a single password will produce vastly different
hashes when the salt is changed. In order for the system to verify a password provided
by the user, it needs to know the salt, so itʼs prepended to the password hash (turning
the 11-character hash into a 13-character salt+hash), then stored in the password file.

So having the salt makes Rainbow Tables impossible, or so conventional wisdom would
have us believe. Even as I was writing this, I saw a tweet that said “Iʼm telling you that
crypt(3) passwords (the Unix DES kind) have salts. You canʼt rainbow-table them.”

How bad does the salt make it? That depends on who you ask. A quick review of
discussion in various Rainbow Table forums yields quotes like “Thousands of times
more work at hundreds of times slower speeds,” “Increases key space by billions, to
billions of billions,” and the most common “You need a rainbow table for every salt.”

Making matters worse, the hash algorithm itself is much slower than todayʼs algorithms.
So for these reasons, nobody (that Iʼve been able to find) has developed crypt(3)
Rainbow Tables.

End of Story?

Not so fast. Itʼs not that bad. At all. Yes, the salt effectively increases the size of the key
space, by a factor of 4096 (which is 642, the number of characters in the salt character
set, raised to the length of the salt). Yes, generating and managing 4096 different
rainbow tables would be difficult. Difficult, but certainly not insurmountable.

Thereʼs another way to look at it, though. Weʼre really just adding 2 characters to the
password key space. Not even that, since the password itself can come from a much
wider range of characters than the salt does. With the massive hard drives available
today, people are already making and sharing Rainbow Tables for 9 or 10 character
passwords. So the key space itself shouldnʼt be a reason not to try.

Also, computing power is getting cheap. Very cheap. The most powerful computers
available to the casual password cracker today are incredibly fast, and take advantage
of the massive horsepower developed for high-speed, high-resolution graphical
applications. Those systems (graphical processing units, or GPUs) are even available
for rent in “the cloud,” so you donʼt even need to buy your cracking hardware any more.

Nails in the Crypt(3) December 21, 2010

How about some numbers? There are three key dates for this technology: Hellmanʼs
original paper (1980), Oechslinʼs practical application and the birth of Rainbow Tables
(2003), and today (2010). So letʼs compare technology for those dates.

First, computing power. In 1980, the state-of-the-art was the Motorola 68000 CPU, used
in workstations from HP, Silicon Graphics, and Sun (and of course, in the original
Macintosh). In 2003, the Intel Pentium P4 was on the leading edge of performance, and
today, that lead is arguably held by the Intel Core i7. The i7 is 15 times faster than the
P4, and almost 150,000 times faster than the 68000. Storage has followed a similarly
astronomical rise over the last 30 years, with todayʼs top-end about 50 times the size of
common drives from 2003, and vastly larger than 1980ʼs technology.

What does this mean for crypt(3) tables? I recently measured the algorithm at about 9
times slower than LM or MD5 algorithms. But CPUs are 15 times faster than they were
when people first started building Rainbow Tables for LM hashes. If that speed was
good enough for LM, in 2003, then surely todayʼs speeds (and storage capacities) are
good enough for crypt(3)?

To better understand what this means in real-world usage, I estimated the size required
to store a Rainbow Table set for 8-character passwords, consisting only of lowercase
letters and numbers. The chain length (a measure of how sparse the resulting table is)
was assumed to be 10,000 hashes. The calculations indicated the entire set would take
about 17.3 Terabytes, or about 9 of todayʼs 2 TB drives.

1980 2003 2010

Typical CPU 68000 P4 i7

Speed (MIPS) 1 9700 147600

Relative to 2003 0.0001 1 15 x

Increases in Processor Power

1980 2003 2010

Typical Drive 5 MB 40 GB 2 TB

Relative to 2003 0.00012 1 50 x

Increases in Storage Capacity

Nails in the Crypt(3) December 21, 2010

While thatʼs still a tremendous amount of data, today you can purchase that amount of
space for under $1000. Thatʼs not even considering the 3 TB drives which are already
on the market. This cost would be trivial for a dedicated InfoSec corporation (or criminal
enterprise). Of course, this is a small character space, but Iʼm just showing a starting
point. Some rough calculations for other key spaces follow:

The formula Iʼm using here is “(Charset Size)(Password Length) * (Index Size) * (Salt
Multiplier) / (Chain Length).” The tables use an index of 8 bytes, but you store the
beginning and end for each chain, so thatʼs 16 bytes total. The chain length (in this
example) is 10,000 hashes/chain, and the Salt Multiplier is 4096 (the number of different
hashes that the salt forces you to compute). So, 6-characters, a-z A-Z 0-9 would be
(26+26+10)6 * 16 * 4096 / 10000, approximately 346 GB. Longer chains would therefore
decrease the table size proportionately, at the cost of longer search times.

So, yes, the salt still makes it difficult, but itʼs certainly not impossible. Is it finally time to
invite crypt(3) to the party?

This is great and all, but, well, “Who Cares?”

That can be answered with two words: “Gawker Media.” On December 12, 2010,
hackers announced that they had compromised the systems at Gawker and stolen over
1.3 million email addresses (and associated password hashes) in use at Gawkerʼs
multiple web sites. Over 750,000 of these hashes are stored with crypt(3). At this
writing, well over 200,000 of those hashes have been cracked, but thatʼs still only about

Hash Bytes
Number of Top-end DrivesNumber of Top-end DrivesNumber of Top-end Drives

Hash Bytes
1980 2003 2010

NTLM 4.32 GB 885 <1 << 1

Crypt(3) 17.2 TB 3.6 million 443 9

Approximate Storage Requirements for NTLM and Crypt(3) Rainbow Tables (8-
characters, lowercase letters and numbers)

Key Space Bytes Number of 2 TB Drives

6-char a-z, A-Z, 0-9 346 GB < 1

8-char A-Z 1.3 TB < 1

6-char, all chars (96) 4.8 TB 3

8-char a-z, 0-9 17.2 TB 9

Size of Rainbow Table for Various Key Spaces

Nails in the Crypt(3) December 21, 2010

a quarter of the entire set. What if the entire set could have been cracked with a
Rainbow Table, in just a day?

Even beyond the Gawker incident, crypt(3) passwords are in use in many places.
Theyʼre simple, well-understood, and well-supported. Iʼve personally seen them in use
supporting several different applications, including:

• In .htaccess files, providing basic access control for web pages
• OpenLDAP databases, for user authentication to desktops and servers
• TACACS password files, authenticating network administrators for access to

routers, switches, and other enterprise hardware

When you get down to it, crypt(3) passwords, while fading from popularity, will continue
to be found anywhere legacy systems or lazy administrators and programmers exist
(which probably describes quite a few organizations).

Again, though, who cares? Why even bother? Well, I personally think that the
proliferation of Rainbow Tables have helped to fuel better awareness of password
storage systems, and their drawbacks. Also, I donʼt think that just because nobodyʼs
done this publicly before, that well-funded criminal organizations (or adversarial
corporate or governmental organizations) havenʼt already developed this capability. So
if this helps to put one more nail in the crypt(3) coffin, so we can move forward to better
technology, then Iʼll be happy.

How does this work, anyway?

Well, first letʼs review how Rainbow Tables work. As stated above, theyʼre just a
sparsely populated table of hashes (though theyʼre not really stored as hashes). You
store only some very small fraction of key values, and then re-compute the missing
values on the fly as you search. Itʼs easiest to show with a pair of charts, presented on
the next page (all computations are simulated).

The “Convert to plaintext” function is an arbitrary, but deterministic, conversion between
a binary number and a string of readable letters. It wonʼt be as neat as the (imaginary)
example shown here – it just needs to be predictable and consistent. At the end of the
process, you store the index for the beginning and end of the chain (here, “1337D00D
71011345”) in the table, and continue on with another chain. The table itself is then just
a list of thousands of such chains.

Nails in the Crypt(3) December 21, 2010

Once you have a table built, how do you search for a hash? Letʼs say you have the
password hash “197ee8e0” – hereʼs how you then recover the password that hash
represents:

Why do we call these “Rainbow” Tables? The reduction function (that converts the index
to a plaintext value) has to be predictable, as I said earlier. However, thereʼs a strong

Start with a 4-byte index 1337D00D

Convert index to plaintext passwd

Apply the hash function 76a2173b

Convert hash into a new index DEADBEEF

Convert index to plaintext S33krt

Plaintext to hash 197ee8e0

Hash to index 31415926

(etc.) (etc.)

End of chain 71011345

Building a Rainbow Table

Target hash 197ee8e0

Convert to index. Is it in the table? 31415926

No. Convert to plaintext, hash it, index,
compare, repeat, etc.

(etc.)

Yes! This index is in the table! 71011345

Return to the start of that chain and continue 1337D00D

Index to plaintext.... passwd

...plaintext to hash... Does it match the target? 76a2173b

No. Hash to index... DEADBEEF

...index to plain.... S33krt

...plain to hash...Match? YES! Our password
is “S33krt”.

197ee8e0

Searching Rainbow Table for Hash

Nails in the Crypt(3) December 21, 2010

benefit to changing that function, subtly, for each step of the chain. This gradual
morphing of the function is like a rainbow of colors across the whole spectrum. The
advantage of this slight change is that a single index will resolve to a different plaintext,
depending on where in the chain it falls. This helps to eliminate chain loops, merging,
crossovers, and other things that complicate Rainbow Table generation and use.

That’s neat. I mean, really neat. So...crypt(3)?

There are a few different approaches that could be taken to add support for crypt(3).
The easy, and obvious way, is to do what the conventional wisdom suggests: Build a
different table for each salt. Of course, that makes things quite complicated. Your front
end has to take a list of hashes, break them up according to the salts in use, and pass
each hash off to a different cracking process using a different set of tables. Furthermore,
itʼs possible that, because of various Rainbow Table optimizations, a single (very large)
table set might actually be smaller than 4096 different smaller sets.

I think Iʼve found a better approach. Since the salt, essentially, makes an 8-character
password into a 10-character password.... Instead of making 4096 tables, one for each
salt, just make a single table, and include the salt as part of the password.

Thereʼs a little sleight-of-hand here, so Iʼll rephrase it. You build the table as usual, but
change the target password length from 1-8 characters, to 3-10 characters. Then, after
each index-to-plain step, you strip off the first two characters, and use those as the salt
for the next plain-to-hash step. Eventually, youʼll get every password and every salt.
(Well, in a “Perfect Table,” at least, but thatʼs a deep, and deeply arcane, digression).

Start with a 4-byte index 06021023

Convert to plaintext. Call the first two
characters the salt.

jlpasswd

Apply the hash function jlGL5WwVAD7fo

Convert hash to index 71311811

Convert index to plaintext yzS33krt

Apply the hash function yz5o1UvS5lDAo

Convert hash to index 58132134

(etc.) (etc.)

End of chain F00FC7C8

Building a Table With Salted Hashes

Nails in the Crypt(3) December 21, 2010

So how’s it work, in practice?

The performance is about 9 times slower, as expected, and the tables end up being
larger, as expected, but itʼs still not out of the realm of possibility. A set of crypt(3) tables
(except for a very short passwords and/or small character sets) wonʼt fit on a laptop, but
itʼll certainly fit in a server closet, or even under a desk.

A good advantage to this approach: the changes to the code are relatively minor. Best
of all, the changes donʼt conflict with the rest of the code. The table format doesnʼt
change, and the same binary can continue to be used for whatever other algorithms it
already supports. Other standard tools (provided they receive the same modifications)
should continue to work as well.

Show me the code!

Absolutely! Thatʼs the whole point. First, a few caveats:

• Iʼm not a full-time programmer. Having extensive experience with perl and
python doesnʼt mean that I can write optimal C code. Something like this
definitely needs optimization.

• The changes I made are based on the “linuxrainbowcrack” project at Google
Code. This projects doesnʼt appear to have been touched since April of this
year, and may not be actively maintained.

• Really, you should consider this proof-of-concept code. The important bit is the
idea, the rest should be pretty simple to implement (and, in fact, this only took
me a couple of days to code).

Target hash yz5o1UvS5lDAo

Convert to index. Is it in the table? 58132134

No. Continue hashing, checking, etc. (etc.)

Yes! This index is in the table! F00FC7C8

Return to the start of that chain and continue 06021023

Index to plaintext.... jlpasswd

...plaintext to hash... Does it match the target? jlGL5WwVAD7fo

No. Hash to index... 71311811

...index to plain.... yzS33krt

...and match? YES! Our password is “S33krt”. yz5o1UvS5lDAo

Searching Rainbow Table for Salted Hash

Nails in the Crypt(3) December 21, 2010

ChainWalkContext.cpp - CChainWalkContext::IndexToPlain()

Added at end of routine, this flattens salt characters (the password itself uses a larger
character set than the salt).

ChainWalkContext.cpp - CChainWalkContext::GetPlainBinary()

Changed original “GetPlain()” call to the following, retrieving only the password portion
of the plaintext (as the 1st two characters are the salt):

ChainWalkContext.cpp - CChainWalkContext::GetHashStr()

Finally, I added the following function (also adding its header to ChainWalkContext.h).
This was required because crypt(3) hashes are generally viewed in their traditional
base64-ish form, not as a hexdump, as the rest of the algorithms supported by this code
are displayed.

if (m_sHashRoutineName == "crypt") {
 unsigned char salt[65] =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuv
wxyz0123456789/.";

 m_Plain[0] = salt[m_Plain[0] & 0x3f];
 m_Plain[1] = salt[m_Plain[1] & 0x3f];
}

if (m_sHashRoutineName == "crypt")
 sRet += GetPlain().substr(2,8);

else
 sRet += GetPlain();

string CChainWalkContext::GetHashStr()
{
 string sRet;
 int i;
 for (i = 0; i < MAX_HASH_LEN && i < 13; i++)
 {
 sRet += m_Hash[i];
 }

 return sRet;
}

Nails in the Crypt(3) December 21, 2010

CrackEngine.cpp - CheckAlarm()

Added new plaintext print statement, just before the existing print:

HashRoutine.cpp - CHashRoutine::CHashRoutine()

Added a line to add the new hash to the programʼs list of algorithms:

RainbowCrack.cpp - NormalizeHash()

Added a check at the top, to read the human-readable hashes and convert to hex:

HashAlgorithm.cpp

Added two includes, and the actual crypt(3) hash function (with appropriate header
added to HashAlgorithm.h).

if (cwc.GetHashRoutineName() == "crypt")
 printf("plaintext of %s is %s\n", cwc.GetHashStr().c_str(),
 cwc.GetPlain().substr(2,8).c_str());

AddHashRoutine("crypt", HashCrypt, 13);

if (sHash.length() == 13) {
 sNormalizedHash = HexToStr((unsigned char *)sHash.c_str(), 13);
 sHash = sNormalizedHash;
 return true;
}

#include <unistd.h>
#include <string.h>

[......]

void HashCrypt(unsigned char* pPlain, int nPlainLen,
unsigned char* pHash)
{
 unsigned char *realPlain;
 unsigned char realSalt[2];

 realSalt[0] = pPlain[0];
 realSalt[1] = pPlain[1];
 realPlain = pPlain;
 realPlain += 2;

 memcpy(pHash, DES_crypt((const char*)realPlain, (const
char*)realSalt), 13);

}

Nails in the Crypt(3) December 21, 2010

RainbowCrack.cpp - main()

Added code to print these hashes and found passwords plainly (just before the existing
print, in the “result” section):

RainbowTableDump.cpp - main()

Added crypt(3) specific print statements just before the existing print:

Thatʼs it. There are only about 50-some lines of code, and much of that is about
reading, writing, and displaying the hashes.

Outstanding! Problems?

Itʼs still kind of slow. Iʼm not sure how much attention crypt(3) has gotten in recent years,
but perhaps this might encourage more research there. The algorithm might also benefit
from being ported to GPU-based hardware. Unfortunately, Iʼve read some discussion
that DES, the basis of crypt(3), doesnʼt lend itself well to GPU systems, because of the
extensive lookup tables that are involved in the algorithm.

Finally, no, I donʼt have prebuilt tables for you to download. Sorry.

Conclusion

Years ago, any approach for crypt(3) Rainbow Tables simply wasnʼt going to be feasible.
However, with the continued application of Mooreʼs law, CPUs (and storage) have
reached the level where I think itʼs finally becoming practical. Unfortunately, a full,
perfect table, of all 8-character passwords, using a full 96-element character set, is still
beyond the reach of all but the most determined Rainbow Table enthusiasts.

Even with that, I still believe that shorter lengths can be (relatively) easily created,
stored, and distributed. If other efforts, like Matt Weirʼs dictionary-based tables, are also
applied, then even longer and more complex passwords can be added to the tables.

if (vHash[i].length() == 26) {
 int t;
 unsigned char pHash[14];
 ParseHash(vHash[i], pHash, t);
 pHash[13] = '\0';

 printf("%s %s hex:%s\n", pHash, sPlain.substr(2,8).c_str(),
sBinary.c_str());
} else

if (cwc.GetHashRoutineName() == "crypt") {
 printf("#%-4d %s %s %s\n", nPos,
 uint64tohexstr(cwc.GetIndex()).c_str(),
 cwc.GetPlainBinary().c_str(),
 cwc.GetHashStr().c_str());
} else

Nails in the Crypt(3) December 21, 2010

I hope this gets some people excited, gets some tables built, and that this has at least
been an interesting read. Thanks!

References

Wikipedia: Rainbow Tables http://en.wikipedia.org/wiki/Rainbow_tables and crypt(3):
http://en.wikipedia.org/wiki/Crypt_(Unix)

Good background reading: http://www.codinghorror.com/blog/2007/09/rainbow-hash-
cracking.html and http://kestas.kuliukas.com/RainbowTables/

Seminal academic works: “A Cryptanalytic Time - Memory Trade-Off” (Hellmann, 1980):
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.120.2463&rep=rep1&type=pdf
and “Making a Faster Cryptanalytic Time-Memory Trade-Off” (Oechslin, 2003): http://
lasecwww.epfl.ch/~oechslin/publications/crypto03.pdf

Google code repository for l inuxrainbowcrack: http://code.google.com/p/
linuxrainbowcrack/

Nails in the Crypt(3) December 21, 2010

http://en.wikipedia.org/wiki/Rainbow_tables
http://en.wikipedia.org/wiki/Rainbow_tables
http://en.wikipedia.org/wiki/Crypt_(Unix)
http://en.wikipedia.org/wiki/Crypt_(Unix)
http://www.codinghorror.com/blog/2007/09/rainbow-hash-cracking.html
http://www.codinghorror.com/blog/2007/09/rainbow-hash-cracking.html
http://www.codinghorror.com/blog/2007/09/rainbow-hash-cracking.html
http://www.codinghorror.com/blog/2007/09/rainbow-hash-cracking.html
http://kestas.kuliukas.com/RainbowTables/
http://kestas.kuliukas.com/RainbowTables/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.120.2463&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.120.2463&rep=rep1&type=pdf
http://lasecwww.epfl.ch/~oechslin/publications/crypto03.pdf
http://lasecwww.epfl.ch/~oechslin/publications/crypto03.pdf
http://lasecwww.epfl.ch/~oechslin/publications/crypto03.pdf
http://lasecwww.epfl.ch/~oechslin/publications/crypto03.pdf
http://code.google.com/p/linuxrainbowcrack/
http://code.google.com/p/linuxrainbowcrack/
http://code.google.com/p/linuxrainbowcrack/
http://code.google.com/p/linuxrainbowcrack/

Diffs

What follows is the full, raw diff file, comparing my revisions against the last release of
linuxrainbowcrack (on Google Code), from April 12, 2010.

Nails in the Crypt(3) December 21, 2010

diff -r original/ChainWalkContext.cpp djs/ChainWalkContext.cpp
428a429,435
> /* DJS */
> if (m_sHashRoutineName == "crypt") {
> unsigned char salt[65] =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789/.";
>
> m_Plain[0] = salt[m_Plain[0] & 0x3f];
> m_Plain[1] = salt[m_Plain[1] & 0x3f];
> }
470c477,482
< sRet += GetPlain();

> /* DJS */
> if (m_sHashRoutineName == "crypt")
> sRet += GetPlain().substr(2,8);
>
> else
> sRet += GetPlain();
483a496,508
> /* DJS */
> string CChainWalkContext::GetHashStr()
> {
> string sRet;
> int i;
> for (i = 0; i < MAX_HASH_LEN && i < 13; i++)
> {
> sRet += m_Hash[i];
> }
>
> return sRet;
> }
>
diff -r original/ChainWalkContext.h djs/ChainWalkContext.h
72a73
> string GetHashStr(); /* DJS */
diff -r original/CrackEngine.cpp djs/CrackEngine.cpp
92c92,98
< printf("plaintext of %s is %s\n", cwc.GetHash().c_str(), cwc.GetPlain().c_str());

> /* DJS */
> if (cwc.GetHashRoutineName() == "crypt")
> printf("plaintext of %s is %s\n", cwc.GetHashStr().c_str(), cwc.GetPlain
().substr(2,8).c_str());
>
> else
> printf("plaintext of %s is %s\n", cwc.GetHash().c_str(), cwc.GetPlain().c_str
());
>
131,132c137
< //printf("debug: using %s walk for %s\n", fNewlyGenerated ? "newly generated" :
"existing",
< // vHash[nHashIndex].c_str());

> //printf("debug: using %s walk for %s\n", fNewlyGenerated ? "newly generated" : "existing",
vHash[nHashIndex].c_str());

Nails in the Crypt(3) December 21, 2010

diff -r original/HashAlgorithm.cpp djs/HashAlgorithm.cpp
15a16,19
> /* DJS */
> #include <unistd.h>
> #include <string.h>
>
59a64,78
>
>
> /* DJS */
> void HashCrypt(unsigned char* pPlain, int nPlainLen, unsigned char* pHash)
> {
> unsigned char *realPlain;
> unsigned char realSalt[2];
>
> realSalt[0] = pPlain[0];
> realSalt[1] = pPlain[1];
> realPlain = pPlain;
> realPlain += 2;
>
> memcpy(pHash, DES_crypt((const char*)realPlain, (const char*)realSalt), 13);
> }
diff -r original/HashAlgorithm.h djs/HashAlgorithm.h
13a14,16
> /* DJS */
> void HashCrypt(unsigned char* pPlain, int nPlainLen, unsigned char* pHash);
>
diff -r original/HashRoutine.cpp djs/HashRoutine.cpp
22a23,25
>
> /* DJS */
> AddHashRoutine("crypt", HashCrypt, 13);
diff -r original/RainbowCrack.cpp djs/RainbowCrack.cpp
77a78,84
> /* DJS */
> if (sHash.length() == 13) {
> sNormalizedHash = HexToStr((unsigned char *)sHash.c_str(), 13);
> sHash = sNormalizedHash;
> //printf("Normalized: %s\n", sHash.c_str());
> return true;
> }
347a355,364
> /* DJS */
> if (vHash[i].length() == 26)
> {
> int t;
> unsigned char pHash[14];
> ParseHash(vHash[i], pHash, t);
> pHash[13] = '\0';
>
> printf("%s %s hex:%s\n", pHash, sPlain.substr(2,8).c_str(), sBinary.c_str
());
> }
349c366,367
< printf("%s %s hex:%s\n", vHash[i].c_str(), sPlain.c_str(), sBinary.c_str());

> else
> printf("%s %s hex:%s\n", vHash[i].c_str(), sPlain.c_str(), sBinary.c_str
());

Nails in the Crypt(3) December 21, 2010

diff -r original/RainbowTableDump.cpp djs/RainbowTableDump.cpp
56,59c56,69
< printf("#%-4d %s %s %s\n", nPos,
< uint64tohexstr(cwc.GetIndex()).c_str(),
< cwc.GetPlainBinary().c_str(),
< cwc.GetHash().c_str());

> /* DJS */
> if (cwc.GetHashRoutineName() == "crypt")
> {
> printf("#%-4d %s %s %s\n", nPos,
> uint64tohexstr(cwc.GetIndex()).c_str(),
> cwc.GetPlainBinary().c_str(),
> cwc.GetHashStr().c_str());
> } else
> {
> printf("#%-4d %s %s %s\n", nPos,
> uint64tohexstr(cwc.GetIndex()).c_str(),
> cwc.GetPlainBinary().c_str(),
> cwc.GetHash().c_str());
> }

